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Abstract The level lines of the Gaussian free field are known to be related to SLE4. It is
shown how this relation allows to define chordal SLE4 processes on doubly connected do-
mains, describing traces that are anchored on one of the two boundary components. The
precise nature of the processes depends on the conformally invariant boundary conditions
imposed on the second boundary component. Extensions of Schramm’s formula to doubly
connected domains are given for the standard Dirichlet and Neumann conditions and a rela-
tion to first-exit problems for Brownian bridges is established. For the free field compacti-
fied at the self-dual radius, the extended symmetry leads to a class of conformally invariant
boundary conditions parametrised by elements of SU(2). It is shown how to extend SLE4

to this setting. This allows for a derivation of new passage probabilities à la Schramm that
interpolate continuously from Dirichlet to Neumann conditions.
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1 Introduction

The Schramm-Loewner evolutions (SLE) have proved to be a powerful tool to analyse the
scaling limit of interfaces in two-dimensional systems of statistical mechanics at criticality.
They constitute a one parameter family of conformally invariant planar growth processes
that is obtained by solving Loewner’s differential equation with a stochastic drift whose
diffusion constant is a parameter κ > 0 [26].

An application of the SLE theory is given by Schramm’s formula: suppose that we con-
sider interfaces on a simply connected domain joining two boundary points (chordal SLEκ ).
Given some bulk point in the domain, we may ask for the probability that it lies to the left or
to the right if we go along this interface from one boundary point to another. This problem
was solved for any value of κ [33]. If we choose the disc geometry as depicted in Fig. 1(a),
and chordal traces from 1 to eix then the left-passage probability is given in terms of Gauß’
hypergeometric function [1]:
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If we consider instead doubly connected domains, there is an obvious generalisation of
Schramm’s probability: a chordal SLEκ trace, whose ends are anchored on one boundary
component, can circumvent the second boundary component in two ways as illustrated in
Fig. 1(b) for a circular annulus Ap comprised between |z| = e−p and |z| = 1. As a generali-
sation of (1) we would like to evaluate the left- or right-passage probability with respect to
this boundary. As we may impose different (conformally invariant) boundary conditions on
this boundary component the doubly connected case offers the possibility to study the influ-
ence of boundary conditions on the chordal SLEκ process. A simple example is provided by
the Ising model: consider the annulus geometry of Fig. 1(b) and fix the Ising spins to + on
the boundary arc (1, eix), and to − on the complementary arc. Then there will be an interface
joining 1 and eix separating + from − spins whose scaling limit gives a SLE3 process [37].
Intuitively, it is clear that the precise value of the left-passage probability with respect to
the second boundary depends on our choice among the three conformally invariant bound-
ary conditions imposed thereon: +, − or free. Moreover, for free boundary conditions, we
may even expect that the interface can hit this second boundary component with non-zero
probability in the scaling limit.

As opposed to chordal SLEκ processes in simply connected domains the passage problem
on doubly connected domains could so far not be solved for arbitrary values of κ . Some ex-
plicit results were obtained for SLE2, i.e. the scaling limit of the loop-erased random walk on
doubly connected domains with Dirichlet boundary conditions [22], and Dirichlet-Neumann

Fig. 1 (a) Left- and
right-passage (solid and dashed
line) for a trace from 1 to eix

with respect to 0 on the unit disc,
and (b) with respect to the inner
boundary |z| = e−p on a circular
annulus Ap
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boundary conditions [23]. The purpose of this article is to evaluate the left/right-passage and
hitting probabilities for another solvable case: SLE4 on doubly connected domains. The case
κ = 4 is known to be related to the level lines of the Gaussian free field which corresponds
to a very simple conformal field theory (CFT) with central charge c = 1. More precisely the
SLE4 trace is a discontinuity line emerging from finite discontinuities of the field that takes
piecewise constant values at the boundary. The jump of the field across the discontinuity line
takes a universal value, 2λ = π

√
2 in our normalisations, irrespective of the precise value

of the discontinuity at the boundary. Yet a proper SLE4 trace is obtained only if the latter
equals 2λ, too. Otherwise, one has to deal with the so-called SLE(4,ρ) processes [16, 34].
Hence, we concentrate on the free field theory on doubly connected domains like the circu-
lar annulus in Fig. 1(b), where the boundary values are +λ on the arc (1, eix) and −λ on
the complementary arc. Again, on the second boundary component we are free to choose
any conformally invariant boundary condition. We provide the passage probabilities for the
canonical choices of Dirichlet and Neumann boundary conditions, and show that they are
related to simple stochastic processes known as Brownian bridges and their generalisations.
Moreover it turns out that our methods extend to the case of the compactified free field at
the self-dual radius. The corresponding conformal field theory displays an extended sym-
metry, and is equivalent to the level 1 Wess-Zumino-Witten model for SU(2). We repeat
our analysis for a large class of conformally-invariant boundary conditions parametrised by
group elements of SU(2), arising from marginal boundary deformations of the free field
theory [14, 15, 31]. We thus derive passage probabilities that continuously interpolate from
Dirichlet to Neumann boundary conditions while preserving conformal invariance.

The article is organised as follows. We start with a brief reminder about SLE on simply
and doubly connected domains in Sect. 2. In particular we explain the procedure of deform-
ing SLE measures with martingales in order to intertwine between different versions of SLE.
Our arguments rely on the correspondence between SLE martingales and ratios of CFT cor-
relation functions [2, 3, 9]. Therefore, in Sect. 3 we recall elementary methods to compute
boundary correlation functions for the Gaussian free field using Gaussian functional inte-
grals as well as some standard regularisation schemes, and discuss their relation to SLE4

martingales. We use these in order to define chordal SLE4 on doubly connected domains
with different boundary conditions. In Sect. 4 we show how these SLE4 processes allow to
map the problem of left/right-passage on doubly connected domains or hitting of the second
boundary component to a first-exit problem of Brownian bridges from an interval (here the
open interval (0,2π)). For Dirichlet boundary conditions on the inner boundary the corre-
sponding probabilities depend sensitively on the boundary values taken by the field, and a
detailed analysis of the different cases is given in (30)–(36). For Neumann boundary con-
ditions the corresponding Brownian bridge lives on a circle, and we generalise the solution
of the first-exit problem in (38), (39). Section 5 treats the compactified free field at the self-
dual radius. We recall some facts about generalised SU(2) boundary conditions and then
compute a (non-trivial) boundary two-point function on doubly connected domains for the
boundary condition changing (b.c.c.) operators relevant to SLE. The two-point function al-
lows to define some generalised SLE4 variants. We find the passage probabilities and hitting
probabilities for these SLE processes by solution of the corresponding first-exit problem.
Our main results can be found in (51), (52), (53). Moreover, we discuss in detail the hitting
probability and show that non-hitting of the inner boundary of the annulus is only possible
for pure Dirichlet boundary conditions with special values taken by the field at the boundary.
We present our conclusions in Sect. 6. An appendix recalls some facts about SU(2) current
one-point functions on doubly connected domains and Lie derivatives.
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2 SLE on Simply and Doubly Connected Domains

We start from some well-known facts about SLE on simply connected domains (for re-
views see [6, 17], or the book [26]). Given a simply connected planar domain D and two
boundary points x0, x∞ ∈ ∂D the chordal Schramm-Loewner evolution is defined by a mea-
sure PD,x0,x∞ on non-self-crossing curves γ from x0 to x∞ in D with the following two
properties. (i) Conformal transport: if f (z) is a conformal mapping from D to D

′ = f (D),
and x ′

0, x
′∞ the images x0, x∞ then the image of a sample trace γ has probability measure

PD′,x′
0,x′∞ ; (ii) Domain Markov property: suppose that we condition the curves on a first por-

tion γ1 from x0 to z ∈ D, then the remainder γ \γ1 from z to x∞ has the distribution in the
domain cut along γ1, i.e. PD,x0,x∞[γ |γ1] = PD\γ1,z,x∞[γ \γ1]. If instead we are interested in
curves joining a boundary point x0 ∈ ∂D and a bulk point z ∈ D, we deal with a version
called radial SLE.

The built-in conformal invariance of SLE leaves us free to choose a reference domain of
particular symmetry. As a reference domain for doubly connected domains we use a cylinder
Tp that corresponds to the rectangle {z ∈ C |0 ≤ Re z < 2π, 0 < Im z < p} with z and z+2π

identified. The annulus Ap mentioned in the introduction is obtained through a conformal
transformation w = eiz. In fact, for every doubly connected domain D it exists a p > 0 such
that D may be conformally mapped onto Tp [29]. The parameter p is called modulus and
specifies a conformal equivalence class. We shall often call Im z = 0 and Im z = p the lower
and upper boundary of the cylinder.

2.1 SLE on Simply Connected Domains

Loewner’s equation, radial SLE. In the limit p → ∞ we obtain a semi-infinite cylinder
T∞ which is a simply connected domain when completed with the point at infinity i∞.
We consider traces γ that start from x0 = 1, and are parametrised by some time parameter
t ≥ 0. We denote by γt the tip of the curve at time t , and by γ[0,t] = ⋃

0≤s≤t γs the trace to
time t . For simplicity, let us suppose for the moment that γ[0,t] has no double points (this
condition has to be relaxed for general SLE processes, see below). Since T∞\γ[0,t] is still
simply connected (at least for sufficiently small t ) there is a conformal mapping gt (z) from
this cut domain back to T∞ thanks to the Riemann mapping theorem. The time evolution of
this mapping is governed by Loewner’s differential equation. For T∞ it is given by

dgt (z)

dt
= cot

(
gt (z) − Wt

2

)
, gt=0(z) = z. (2)

In fact, the time parametrisation was chosen so that the gt (z) ∼ z+2t/z+· · · as Im z → +∞
(in fact, this is formally equivalent the standard normalisation for chordal SLE in the upper
half plane [26]). The real-valued function Wt is the image of the tip γt under gt (z) and en-
codes the full information about γ[0,t]. For the radial case from 0 to ∞ (here ∞ corresponds
to the limit Im z → +∞) conformal invariance and the domain Markov property (and re-
flection symmetry) lead to Wt = √

κBt where Bt is standard Brownian motion, and κ > 0 a
positive real parameter. This corresponds to radial SLE (on an infinite cylinder).

Conversely, we may study traces resulting from injecting Wt = √
κBt into Loewner’s

equations (2) what yields a conformally invariant growth process. For 0 ≤ κ ≤ 4 the traces
γ[0,t] are simple curves; for 4 < κ < 8 they have double points and in this case gt (z) rather
maps T∞\Kt back to T∞ where Kt is the complement of the connected component of
T∞\γ[0,t] that contains the point ∞, called the hull. For κ ≥ 8 the traces become space filling
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Peano curves [32]. For several values of κ the Schramm-Loewner evolution SLEκ describes
interfaces in critical models of statistical mechanics: for example κ = 2 corresponds to the
scaling limit of the loop-erased random walk [27], κ = 8/3 to the scaling limit of the self-
avoiding walk ([28], still a conjecture), and κ = 8 to the Peano curve of the uniform spanning
tree [27].

Chordal SLE. The chordal case on the infinite cylinder T∞ involves a slight complication.
If we would like to study SLEκ traces from 0 to x then the presence of a marked point on the
boundary implies that Wt is not pure Brownian motion anymore. It rather has an additional
drift [35, 36]:

dWt = √
κ dBt +

(
6 − κ

2

)
cot

(
Xt − Wt

2

)
dt, Xt = gt (x). (3)

This defines a chordal SLE process up to the first time where the two points Xt and Wt

meet, what means that the growth process has reached its final point. This equation is
obtained upon mapping the usual chordal SLEκ on the upper half-plane onto T∞. How-
ever, it is worth mentioning a more probabilistic approach using statistical mechanics mar-
tingales and the SLE-CFT-correspondence [2, 3]. To this end, consider the cut domain
T∞;t = T∞\γ[0,t], and the partition functions Zrad

T∞;t (γt ,∞) and Zchord
T∞;t (γt , x) for radial traces

from γt to ∞, and chordal traces from γt to x respectively. In the scaling limit, we know
that they correspond to CFT correlation functions Zrad

Ut
(γt ,∞) = 〈Φ0,1/2|ψ1,2(γt )〉T∞;t and

Zchord
T∞;t (γt , x) = 〈ψ1,2(γt )ψ1,2(x)〉T∞;t . Here Φr,s and ψr,s denote bulk and boundary primary

fields with conformal weights hr,s = ((κr − 4s)2 − (κ − 4)2)/16κ . In particular ψ1,2(x) is
the b.c.c. operator whose insertion into correlation functions mimics the presence of an SLE
trace anchored at the boundary point x, and Φ0,1/2 is the equivalent bulk operator [5]. Using
general arguments from statistical mechanics, one shows that [2, 3]

Mt =
Zchord

T∞;t (γt , x)

Zrad
T∞;t (γt ,∞)

= |g′
t (x)|h1,2Zchord

T∞ (Wt ,Xt )

Zrad
T∞(Wt ,∞)

(4)

is a local martingale for radial SLE on T∞, and corresponds to the Radon-Nykodim deriv-
ative of chordal SLE on T∞ with respect to radial SLE [8]. Here we have tacitly used the
standard transformation formulae for primary fields under conformal mappings. Using this
martingale, we can apply Girsanov’s theorem [12] in order to deform the radial SLE mea-
sure to the chordal one, and work out the stochastic differential equation of chordal SLE
on T∞:

dWt = √
κ dBt + κ

∂

∂w
lnZchord

T∞ (w = Wt,Xt)dt.

In order to obtain this equation we implicitly used that Zrad
U

(Wt ,∞) is a constant due
to translation invariance. The equivalence with (3) then follows from the general form
of boundary two-point functions 〈ψ1,2(x)ψ1,2(y)〉T∞ = |2 sin((x − y)/2)|−h1,2 , h1,2 =
(6 − κ)/2κ , which is fixed by global conformal invariance.

2.2 SLE on Doubly Connected Domains

The generalisation of Loewner’s equation to planar domains with arbitrary connectivity was
first addressed by Komatu [24, 25]. Within the SLE context it has been investigated by Bauer
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and Friedrich [10, 11], in particular the doubly-connected case was studied by Zhan [38–40]
(see also [4] for a derivation based on symmetry arguments).

Loewner’s equation on Tp is given by

dgt (z)

dt
= v(gt (z) − Wt,p − t), gt=0(z) = z, (5)

where the vector field on the right-hand side is

v(z,p) = cot

(
z

2

)
+ 4

∞∑
n=1

sinnz

e2np − 1
. (6)

As p → +∞ while t is kept finite we recover the radial Loewner equation (2). The process
Wt is the image of the tip of the trace γt . Since Tp\γ[0,t] lies in a different conformal equiv-
alence class than Tp the modulus changes in the course of the evolution. For the doubly
connected case this evolution may be reabsorbed into the time parametrisation: in fact, the
solutions to (5) map Tp\γ[0,t] onto Tp−t . Therefore the evolutions ends for t = p (at the
latest). The growth process is determined by the time evolution of Wt . The standard choice
Wt = √

κBt , was analysed by Zhan [38, 39]: injection of this driving process into Loewner’s
equation yields a conformally invariant growth process. In this case for κ ≤ 4 the traces
emerge from 0 and exit the cylinder at the upper boundary at t = p (for κ > 4 the tip of the
trace may hit the lower boundary). For example κ = 2 corresponds to the scaling limit of the
loop-erased random walk on Tp from 0 to the upper boundary.

In the case of marked points like for chordal traces from 0 to x ∈ (0,2π) we have to add
an appropriate drift to Wt in order to force the growth process to terminate at x. Again, con-
sider the cut domain Tp;t = Tp\γ[0,t] and the partition functions ZTp;t (γt ) and Zchord

Tp;t (γt , x)

for the traces from γt to the upper boundary and for chordal traces from γt to x respectively.
The analogue of (4) is given by

Mt =
Zchord

Tp;t (γt , x)

ZTp;t (γt )
= |g′

t (x)|h1,2Zchord
Tp−t

(Wt ,Xt )

ZTp−t (Wt )
, (7)

and has to be a martingale for the SLE variant with Wt = √
κBt . Here we used the usual

transformation rules for primary operators in conformal field theory, and the transformation
properties of the conformal mapping gt (z). Because of translation invariance ZTp−t (Wt )

cannot depend on Wt and therefore is a function of p − t alone; then a straightforward
application of Girsanov’s theorem yields the stochastic differential equation for chordal SLE
on the cylinder:

dWt = √
κ dBt + κ

∂

∂w
lnZchord

Tp−t
(w = Wt,Xt)dt, Xt = gt (x).

In the sequel we consider problems that are invariant under global translations: the chordal
partition function only depends on the relative coordinate Yt = Xt − Wt (see Fig. 2 for an
illustration). It is convenient to abbreviate Zchord

Tp−t
(Wt ,Xt ) = Z(Yt ,p − t). We then have to

solve the stochastic differential equations

dWt = √
κ dBt − κ

∂

∂y
lnZ(y = Yt ,p − t)dt, (8)

dYt = −dWt + v(Yt ,p − t)dt, (9)
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Fig. 2 Motion of points on lower boundary of the cylinder as induced by the Loewner flow. The tip γt of the
first portion of the trace γ[0,t] grown up to time t is sent to Wt whereas the point x follows the flow according
to Xt = gt (x)

where v(y,p) is the vector field from Loewner’s equation. Actually, the second of these
equations simply states that the end point x follows the flow during the evolution and there-
fore is a direct consequence of (5). Upon insertion of (8) into (9) we obtain a single sto-
chastic differential equation for the stochastic process Yt which will be our starting point
for the analysis of the passage problem (see below). As for the simply connected case,
the chordal SLE process defined through these equations is defined only up the first time
where Xt and Wt meet, i.e. when Yt = 0 or 2π , at the latest however at t = p. We will
see below that this simple statement allows to reformulate the passage properties of the
traces as a first-exit problem for the process from the interval (0,2π). However, in order
to fully characterise the chordal SLE process we must first compute the partition function
Z(y,p) = 〈ψ1,2(y)ψ1,2(0)〉Tp . In contrast to the limit p → ∞, there is no global conformal
invariance fixing this correlation function. In the next section, we show how to find explicit
expressions in the case of κ = 4 from free field calculations.

3 Free Field Boundary Correlation Functions

From now on we concentrate on the Gaussian free field/free boson on a domain D. In two
dimensions it corresponds to a conformal field theory with central charge c = 1, defined
through the action

S[X] = 1

2π

∫
D

d2z∂X(z, z̄)∂̄X(z, z̄).

If the planar domain is finite, we must specify boundary conditions (that preserve the con-
formal symmetry). In this section we focus on two cases: (i) for Dirichlet the field is (piece-
wise) constant X(z, z̄) ≡ const. along the boundary; (ii) for Neumann boundary conditions
we have ∂X(z, z̄)/∂ν = 0 at the boundary, where ν denotes the interior normal unit vector at
z ∈ ∂D. Correlation functions can then be computed from the one- and two-point functions,
and the Wick theorem. We shall refer to Xcl(z, z̄) = 〈X(z, z̄)〉b.c.

D
as the “classical configu-

ration” which is the (essentially) unique harmonic function on D, that obeys the prescribed
boundary conditions.

3.1 Simply Connected Domains

For a start it is instructive to consider the simply connected case T∞ with piecewise constant
Dirichlet boundary conditions on its boundary Im z = 0 as shown in Fig. 3 for two discon-
tinuities. Therefore consider M points 0 ≤ x1 < x2 < · · · < xM < 2π and suppose that the
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Fig. 3 (a) Piecewise constant boundary conditions on the infinite cylinder. (b) Finite with discontinuous
Dirichlet boundary conditions on the lower boundary. On the upper boundary we impose either Dirichlet or
Neumann boundary conditions

field has a discontinuity of μk when passing through xk along the boundary in positive di-
rection. For the boundary conditions to be consistent we impose

∑M

k=1 μk = 0. The partition
function Z = Z(x1, . . . , xM) is the sum over all configurations subject to these boundary
conditions weighted by exp−S[X], i.e. the functional integral

Z(x) =
∫

b.c.
[dX] exp−S[X].

The usual strategy for Gaussian functional integrals consists of dividing any configuration
into the classical configuration and fluctuations X(z, z̄) = Xcl(z, z̄) + Xfl(z, z̄). From the
fact that Xcl(z, z̄) is harmonic and Xfl(z, z̄) vanishes at the boundary we see that S[X] =
S[Xcl] + S[Xfl]. The functional integral with respect to the fluctuations yields 1/

√
det−Δ.

We write the classical configuration as Xcl(z, z̄) = Ref (z) where f (z) has the “mode
expansion”

f (z) = −
M∑

k=1

μkxk

2π
−

M∑
k=1

iμk

π

∞∑
n=1

ein(z−xk)

n
. (10)

The classical action S[Xcl] = ∫
T∞ d2z |f ′(z)|2/8π is infinite because the sharp discontinu-

ities at the boundary yield an infinite “elastic energy”. From the point of view of mode
expansions this divergence comes from ultraviolet modes with large n. We remedy this by
truncation of the sum (10) at n = N and compute the action

SN [Xcl] = HN

M∑
k=1

μ2
k

8π2
−

∑
k<l

μkμl

4π2

N∑
n=1

cosn(xk − xl)

n

where HN is the N -th harmonic number, diverging according to HN ∼ lnN for large N [1].
Hence as N → ∞ the partition function behaves to the leading order as

Z(x1, . . . , xM) = a
∑M

k=1 μ2
k
/8π2

√
det−Δ

∏
k<l

∣∣∣∣2 sin

(
xl − xk

2

)∣∣∣∣
μkμl/4π2

where we introduced the short-distance cutoff a = 1/N . It is common lore to interpret
a−∑M

k=1 μ2
k
/8π2√

det−ΔZ(x1, . . . , xM) as M-point function of primary b.c.c. operators in
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conformal field theory. Let us therefore introduce the operators ψμk
(x) that shift the value of

the field X(z, z̄) by μk if we pass through the boundary point x in positive direction. Hence
we find 〈

M∏
k=1

ψμk
(xk)

〉
T∞

=
∏
k<l

∣∣∣∣2 sin

(
xl − xk

2

)∣∣∣∣
μkμl/4π2

.

From M = 2 we have 〈ψ−μ(0)ψμ(x)〉T∞ = |2 sin(x/2)|−μ2/4π2
and thus read off that the

operators ψμ have conformal weight h = μ2/8π2. Moreover, from M ≥ 4 we deduce fusion
rules for these operators. Omitting the details we find

ψμ1 × ψμ2 → ψμ1+μ2 , μ1 + μ2 = 0, (11)

ψ−μ × ψμ → 1 + ∂X

∂ν
. (12)

Our normalisation is chosen so that the fusion coefficient in (11) equals 1. The same holds
for fusion to the identity in (12). However, the fusion coefficient to the normal derivative of
the field is given by μ/4π .

For chordal SLE4 on T∞ the partition function is thus given by a two-point function
of operators creating discontinuities of μ± = ±π

√
2, as was shown in the mathematical

literature [34]. We abbreviate ψ±(x) = ψ±π
√

2(x) and find the conformal weights h± = 1/4
as well as the correlation function 〈ψ−(x)ψ+(0)〉T∞ = |2 sin(x/2)|−1/2 in accordance with
the SLE-CFT correspondence.

3.2 Doubly Connected Domains

We now consider doubly-connected domains. We choose the cylinder Tp as reference geom-
etry, and impose on its lower boundary Im z = 0 Dirichlet conditions (see Fig. 3(b)): the
field takes the value +λ on (0, x) and −λ on (x,2π) with λ = π/

√
2. This amounts to study

the insertion of ψ−(x)ψ+(0) on a −λ-Dirichlet boundary into CFT correlation functions.
For the upper boundary Im z = p we are free to choose any boundary conditions that pre-
serves conformal invariance. Here we shall consider (i) pure Dirichlet boundary conditions:
X ≡ μ = const. and (ii) pure Neumann boundary conditions: ∂X/∂ν = 0 where ν is the
interior normal vector at some point of the upper boundary.

3.2.1 Dirichlet-Dirichlet Boundary Conditions

We write the classical configuration as Xcl(z, z̄) = Ref (z) with the complex-valued func-
tion

f (z) = λ(x − π)

π
− i(λ(x − π) − πμ)z

πp
+ 2iλ

π

∑
n=0

(e−inx − 1)einz

n(1 − e−2np)
.

Following the same strategy as for the simply connected case we find to the partition function

Z(x,p) = aλ2/π2

√
det−Δ

(
η(ip/π)3 exp[−(x − π − πμ/λ)2/4p]

|θ1(x/2π |ip/π)|
)λ2/π2

(13)

where θ1(z|τ) = −∑
n∈Z

e2π i(n+1/2)(z+1/2)+iπτ(n+1/2)2
is a Jacobi θ -function, and Dedekind’s

η-function η(τ) = eiπτ/12
∏∞

n=1(1−e2π inτ ). The determinant of the Laplacian with Dirichlet-
Dirichlet boundary conditions is given by (det−Δ)Tp = p η(ip/π)2/π (this can be found
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from the well-known ζ -function regularisation scheme or lattice calculations when properly
removing the zero mode of the Laplacian). For the critical value λ = π/

√
2 (13) coincides

with the partition function we seek for. Hence we deduce the two-point boundary correlation
function:

A〈ψ−(x)ψ+(0)〉Tp =
∣∣∣∣ η(ip/π)

θ1(x/2π |ip/π)

∣∣∣∣
1/2

×
√

π

p
exp

[
− (x − π − √

2μ)2

8p

]
, (14)

where

A = η(ip/π)−1

√
π

p
exp

[
− (π + √

2μ)2

8p

]
(15)

is the CFT partition function (cylinder amplitude). Since the operators involved are b.c.c.
operators, the normalisation of correlation functions is a bit subtle. Here we have normalised
in such a way that as x → 0+ the correlation function behaves to leading order like x−1/2

(with coefficient 1). In this limit the lower boundary of Tp corresponds to −λ-Dirichlet
conditions as suggested by Fig. 3(b). We will use this convention in the following sections.

3.2.2 Dirichlet-Neumann Boundary Conditions

We may alter the preceding case by imposing Neumann boundary conditions on the upper
boundary Im z = p. The classical configuration is given by Xcl(z, z̄) = Ref (z) with the
complex-valued function

f (z) = λ(x − π)

π
+ 2iλ

π

∞∑
n=0

(
(e−inx − 1)einz

n(1 + e−2np)

)
.

We follow the same lines as above in order to compute the regularised partition function.
A straightforward calculation gives

Z(x,p) = aλ2/π2

√
det−Δ

(
η(2ip/π)2θ4(x/2π |2ip/π)2

η(ip/π)|θ1(x/2π |ip/π)|
)λ2/π2

, (16)

where θ4(z|τ) = ∑
n∈Z

(−1)ne2π inz+iπτn2
is yet another Jacobi θ -function. The determinant

of the Laplacian with Dirichlet-Neumann boundary conditions is given by (det−Δ)Tp =
2(η(2ip/π)/η(ip/π))2. Moreover, this result is equivalent to a boundary two-point func-
tion. As for the Dirichlet-Dirichlet case we may write for the critical value λ = π/

√
2 the

boundary two-point function

A〈ψ−(x)ψ+(0)〉Tp =
∣∣∣∣ η(ip/π)

θ1(x/2π |ip/π)

∣∣∣∣
1/2

θ4(x/2π |2ip/π)√
2

. (17)

with A being the CFT partition function for Dirichlet-Neumann boundary conditions

A = θ4(0|2ip/π)√
2η(ip/π)

= 1 + 2
∑∞

n=1(−1)ne−n2p

√
2η(ip/π)

. (18)

3.3 Null Vector Equations and SLE4 Martingales

In order to check the coherence of our procedure, we must verify that insertion of the parti-
tion functions (13) and (16) in (7) indeed yields a (local) martingale Mt .
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Null vectors and two-point functions. It is known that SLE martingales are related to CFT
null vectors [2, 3]. The SLE-CFT correspondence predicts that the b.c.c. operator ψ1,2 has
a null vector (κL2

−1 − 4L−2)ψ1,2 = 0 in its Verma module where Ln are the modes of the
stress tensor that obey the Virasoro algebra [6, 19]. This leads to differential equations for
correlation functions involving this operator. In particular, for κ = 4 the cylinder boundary
two-point function 〈ψ1,2(0)ψ1,2(x)〉Tp must be solution of

(
2

∂2

∂x2
+ v(x,p)

∂

∂x
+ 1

4
v′(x,p)

)( A〈ψ1,2(0)ψ1,2(x)〉Tp

η(ip/π)1/2

)

= ∂

∂p

( A〈ψ1,2(0)ψ1,2(x)〉Tp

η(ip/π)1/2

)
. (19)

In our specific case, we have the doublet ψ± which corresponds to two copies of the Virasoro
representation associated to ψ1,2. Hence the correlation functions (14) and (17) should be
solution of this partial differential equation what is readily checked by explicit calculation.
Moreover, they hint at a particular structure: these two correlation functions are given as a
product of |η(ip/π)/θ1(x/2π |ip/π)|1/2 and a solution of the heat equation. Indeed one may
show that the general ansatz

A〈ψ−(x)ψ+(0)〉Tp =
∣∣∣∣ η(ip/π)

θ1(x/2π |ip/π)

∣∣∣∣
1/2

f (x,p) (20)

is solution to (19) provided that f (x,p) solves the simple heat equation (ḟ indicates the
derivative of f with respect to p, the prime the derivative with respect to x)

ḟ (x,p) = 2f ′′(x,p). (21)

Notice that besides the cylinder amplitude A it is the function f (x,p) that encodes substan-
tial information about both boundary conditions, and therefore cannot be determined from
the sole Virasoro degeneracy of the b.c.c. operators living on the Dirichlet boundary.

An SLE4 martingale. Given these observations, we infer the structure of the martin-
gales (7) for Zhan’s SLEκ on doubly connected domains in the case κ = 4:

Mt = |g′
t (x)|1/4f (Yt ,p − t)

|θ1(Yt/2π |i(p − t)/π)|1/2
, ḟ (x,p) = 2f ′′(x,p),

Recall that in this case Wt = 2Bt and that the process Yt is solution of the stochastic differ-
ential equation

dYt = −2dBt + v(Yt ,p − t)dt

with the function v(y,p) defined in (6). Checking that Mt is a local martingale amounts to
an application of Itô’s formula.

Using Mt we can apply Girsanov’s theorem according to the argument given in Sect. 2.2
and construct the driving process for the chordal SLE4 processes that describe traces from 0
to x. The process Wt is then obtained from the stochastic differential equation (8), and has
in general some complicated form involving elliptic functions. Remarkably, these cancel out
for the relative coordinate Yt which is solution of the equation

dYt = −2dBt + 4
f ′(Yt ,p − t)

f (Yt ,p − t)
dt, Yt=0 = x. (22)
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Notice that because f (x,p) solves the heat equation (21) we may interpret Yt as a con-
ditioned Brownian motion (this is strongly reminiscent of a Doob h-transform of standard
Brownian motion [18], however with a function h that carries an explicit time dependence).
These observations will allow for a solution of the left-passage problem on doubly con-
nected domains, and will provide a starting point for generalisation to the compactified free
field.

4 Passage Probabilities for Simply and Doubly Connected Domains

Having computed partition functions of the chordal SLE4 traces on doubly connected do-
mains we may now come back to our original problem and study the passage probabilities à
la Schramm for the corresponding SLE processes. We proceed by first recalling the case of
simply connected domains, in particular how the evaluation of these probabilities is related
to an exit problem for a stochastic process from an interval. For κ = 4 this process turns out
to be just one-dimensional Brownian motion. This simplification, together with our analysis
of the null vector equations and martingales on doubly connected domains for κ = 4, sug-
gests that a similar reduction to an elementary stochastic process might occur in the doubly
connected geometry. Indeed, as we show in this section, we can recast the passage problem
into a first-exit problem of simple Brownian bridges from an interval.

4.1 Simply Connected Domains

It is useful, and instructive to recall the basic strategy to find the passage probabilities in
the limit p → +∞ of simply connected domains. For κ = 4 we have 〈ψ−(x)ψ+(0)〉Tp =
|2 sin(x/2)|−1/2, and thus the driving process and the relative motion are solution to the
stochastic differential equation

dWt = 2dBt + cot

(
Yt

2

)
dt, dYt = cot

(
Yt

2

)
dt − dWt.

Upon replacing the first into the second equation we see that dYt = −2dBt , what leads to
Yt = x−2Bt . We conclude that for κ = 4 the relative motion is just simple Brownian motion.
Now, recall that the SLE process is defined only up to the time where Wt and gt (x) meet,
i.e. up to the stopping time τ = inf{t :Yt = (0,2π)}. At t = τ the Loewner evolution has
reached the final point x, and the conformal mapping uniformises the connected component
of T∞\γ[0,τ ] to T∞ while fixing the bulk point ∞. It follows that the trace goes to the left of
∞ if Yτ = 2π , and to the right if Yτ = 0. We define the right- and left-passage probabilities

α(x) = P[Yτ = 0] and β(x) = P[Yτ = 2π].

These are subject to the sum rule α(x) + β(x) = 1. The solution to the exit problem for Yt

from (0,2π) is a standard exercise in stochastic processes [12]: notice that Mt = Yt = x −
2Bt is a martingale. On the one hand we have E[Mτ ] = M0 = x, on the other hand E[Mτ ] =
0 · P[Yτ = 0] + 2π · P[Yτ = 2π ] = 2πβ(x). Thus, we find β(x) = x/2π , as expected from
Schramm’s formula (1) with κ = 4.



The Gaussian Free Field and SLE4 on Doubly Connected Domains 13

4.2 Doubly Connected Domains

The strategy to reformulate the computation of right-/left-passage probabilities for SLE
processes, defined through (8), on doubly connected domains as an exit problem for the
relative motion Yt from (0,2π) is straightforward. The process is defined up to the stopping
time τ = inf{t : Yt /∈ (0,2π)} ∧p (the wedge in this notation indicates that the process stops
at the latest at t = p even if the process did not exit from the interval up to this time). If
τ < p the growth process emanating from 0 has reached the final point x, and the conformal
mapping gτ (z) uniformises the connected component of Tp\γ[0,τ ] that contains the upper
boundary to Tp−τ . It follows that the trace passes to the left of that boundary component if
Yτ = 2π , and to the right if Yτ = 0. Hence as for the simply connected case we introduce
the right- and left-passage probabilities

α(x,p) = P[τ < p and Yτ = 0], and β(x,p) = P[τ < p and Yτ = 2π]. (23)

What happens if τ = p? Since the Loewner evolution stops at this time we interpret τ = p

as an event where the SLE trace hits the upper boundary of Tp . Whether or not this event
takes place depends sensitively on the boundary conditions that we impose on that boundary
component. Hence we introduce the hitting probability

γ (x,p) = P[τ = p]. (24)

Because these three events exhaust all possible scenarios the probabilities must obey the
sum rule

α(x,p) + β(x,p) + γ (x,p) = 1. (25)

Figure 4 illustrates the two different cases of non-hitting vs. hitting schematically. From a
microscopic point of view it becomes clear that in the case of hitting the upper boundary
there is a second interface emanating from x which also hits the upper boundary but is
not directly described by the SLE process (this is very reminiscent of multiple SLE arch
probabilities [7]).

Having set this general framework we must solve the exit problem for the relative motion
process Yt . Our basic strategy consists of constructing martingales for the process Yt with
suitable boundary conditions that project on the left-/right-passage or hitting events as t = τ .
Their expectation values then lead to the probabilities we are interested in.

Fig. 4 (a) Right-passage event
of a trace on the cylinder
corresponding to the event
Yτ = 0 with τ < p. (b) If τ = p

the trace hits the upper boundary.
The same holds for a second
trace anchored at x which is not
directly described by the SLE
process
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4.3 Dirichlet-Dirichlet Boundary Conditions

Let us use the results from Sect. 3.2.1. Combining (14) and (22) we find the stochastic
differential equation:

dYt = −2dBt +
(

Yt − π − √
2μ

p − t

)
dt, Yt=0 = x. (26)

This is the stochastic differential equation for a Brownian bridge from x to y = π + √
2μ,

i.e. Brownian motion starting from x and conditioned to visit y at time t = p [12]. Thus the
passage problem for the SLE4 traces with Dirichlet-Dirichlet boundary conditions on doubly
connected domains is reduced to a first-exit problem for a one-dimensional Brownian bridge
from the interval (0,2π).

The exit probabilities (23) and (24) depend sensitively on the final position y. The first
assertion we can make is if y /∈ [0,2π ] then the Brownian bridge leaves the interval with
probability 1, because limt→p− Yt = y = π + √

2μ with probability 1 [12], at some τ < p.
Therefore, in this case γ ≡ 0. To proceed further we construct two martingales for the
process Yt with appropriate boundary conditions which project at the different events as
t = τ in a suitable manner. Since Yt is a conditioned Brownian motion we may write

M
(k)
t = hk(Yt ,p − t)

e−(Yt −y)2/8(p−t)/
√

8π(p − t)
, k = 1,2,

where hk(x,p) solves the heat equation ḣk(x,p) = 2h′′
k (x,p).

We use M
(1)
t to construct the left-passage probability β(x,p). Since β(x,p) takes val-

ues 0 and 1 at x = 0 and x = 2π respectively we shall impose the boundary conditions
h1(0,p) = 0 and h1(2π,p) = e−(2π−y)2/8p/

√
8πp for all p > 0. We can easily construct an

arbitrary solution that fulfils the first boundary condition by using the method of images.
For y ≥ 0 a reasonable guess, motivated from the well-known method of images, might be:

h1(x,p)
?= 1√

8πp
(e−(x−y)2/8p − e−(x+y)2/8p).

The problem with this function is that it does not match the second boundary condition
at x = 2π because the second term leads to an unwanted term. We eliminate it by adding
e−(x−y−4π)2/8p/

√
8πp. However, this spoils the boundary condition at x = 0 what in turn

can be readjusted upon subtracting e−(x+y+4π)2/8p/
√

8πp. Iteration of this procedure leads
to

h1(x,p) = 1√
8πp

∞∑
n=0

(e−(x−y−4πn)2/8p − e−(x+y+4πn)2/8p),

and one can easily check that it obeys the desired boundary conditions. Moreover, the series
is easily seen to be convergent for any x ∈ (0,2π) and y ≥ 0. A similar strategy can be
applied to find a second martingale M

(2)
t which we use to derive α(x,p): we seek for a

solution h2(x,p) of the heat equation which takes values h2(0,p) = e−y2/8p/
√

8πp and
h2(2π,p) = 0 for all p > 0. Using similar methods as before we find for y ≤ 2π :

h2(x,p) = 1√
8πp

(
e−(x−y)2/8p+

∞∑
n=1

(e−(x−y+4πn)2/8p−e−(x+y−4πn)2/8p)

)
.
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Using these two functions, it is not difficult to show that the local martingales M
(1)
t and M

(2)
t

are bounded for x ∈ [0,2π ] and y ≥ 0 and y ≤ 2π respectively for t ≤ τ . Therefore, they
are proper martingales. At the stopping time they are given as sums of projectors

M(1)
τ = 1{τ<p and Yτ =2π} + (1 − δy,0)1τ=p, y ≥ 0,

M(2)
τ = 1{τ<p and Yτ =0} + (1 − δy,2π )1τ=p, y ≤ 2π,

where we have used the Kronecker symbol δx,y = 1 for x = y, and 0 otherwise, and the
indicator function 1A for some event A. Taking expectations (with respect to the Brownian
bridge measure) we find

β(x,p) + (1 − δy,0)γ (x,p)

= e(x−y)2/8p

∞∑
n=0

(e−(x−y−4πn)2/8p − e−(x+y+4πn)2/8p) (27)

for y ≥ 0, and conversely for y ≤ 2π

α(x,p) + (1 − δy,2π )γ (x,p)

= 1 + e(x−y)2/8p

∞∑
n=1

(e−(x−y+4πn)2/8p − e−(x+y−4πn)2/8p). (28)

As y /∈ [0,2π] these formulae provide directly the left- and right-passage probabilities for
y > 2π and y < 0, respectively, because γ ≡ 0 as stated above. The missing probabilities
can be obtained from the sum rule α(x,p) + β(x,p) = 1 in either case.

Conversely, for y ∈ [0,2π ] both equations are valid. Using the sum rule α(x,p) +
β(x,p) + γ (x,p) = 1 we find

(1 − δy,0 − δy,2π )γ (x,p)

= e(x−y)2/8p

∞∑
n=−∞

(e−(x−y−4πn)2/8p − e−(x+y+4πn)2/8p). (29)

This determines γ (x,p) unless y = 0,2π . Therefore, if y = 0,2π we may insert it in (27)
and (28), and obtain α(x,p) and β(x,p). If however y = 0 or 2π then (29) does not define
γ (one verifies that—consistently—the right-hand side vanishes in these cases). Yet, since
for times t very close to p the process oscillates around y we conclude that even in this case
γ ≡ 0.

Let us now gather our results and list them explicitly for the different cases:

1. y ≤ 0: In this regime, the value of the field μ at the upper boundary is smaller that −λ.
The hitting probability γ vanishes identically. The passage probabilities are given by

α(x,p) = 1−e(x−y)2/8p

∞∑
n=1

(e−(x+y−4πn)2/8p − e−(x−y+4πn)2/8p), (30)

β(x,p) = e(x−y)2/8p

∞∑
n=1

(e−(x+y−4πn)2/8p − e−(x−y+4πn)2/8p). (31)
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2. y ∈ (0,2π): If the value μ is comprised between −λ and +λ then the hitting probability
γ is non-zero. We find:

α(x,p) = 1−e(x−y)2/8p

∞∑
n=0

(e−(x−y−4πn)2/8p − e−(x+y+4πn)2/8p), (32)

β(x,p) = e(x−y)2/8p

∞∑
n=1

(e−(x+y−4πn)2/8p − e−(x−y+4πn)2/8p), (33)

γ (x,p) = e(x−y)2/8p

∞∑
n=−∞

(e−(x−y−4πn)2/8p − e−(x+y+4πn)2/8p). (34)

An illustration of the probabilities β and γ for y = 0, i.e. for a Dirichlet value μ = 0, is
given in Fig. 5.

3. y ≥ 2π : Here μ exceeds +λ. Again, the hitting probability γ vanishes identically. The
passage probabilities are given by

α(x,p) = 1−e(x−y)2/8p

∞∑
n=0

(e−(x−y−4πn)2/8p − e−(x+y+4πn)2/8p), (35)

β(x,p) = e(x−y)2/8p

∞∑
n=0

(e−(x−y−4πn)2/8p − e−(x+y+4πn)2/8p). (36)

An illustration of the left-passage probability β for y = 3π (μ = 2λ), is given in Fig. 5.

Finally we give an intuitive argument for the absence of hitting as |μ| ≥ λ: the SLE process
that we have constructed describes the discontinuity line which is created from the jumps
of the values taken by the field on the boundary. Loosely speaking if we cross this line, the
field varies from −λ to +λ in a microscopic neighbourhood. Thus, as long as −λ < μ < λ

the trace can get microscopically close to the upper boundary of the cylinder whereas this is
not possible for values of μ outside this interval.

Fig. 5 Illustration of the passage probabilities β(x,p) and γ (x,p) for Dirichlet-Dirichlet boundary condi-
tions for the modulus p = π . (a) μ = 0 (y = π(1 + μ/λ) = π ), (b) μ = 2λ (y = π(1 + μ/λ) = 3π )
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4.4 Dirichlet-Neumann Boundary Conditions

The Dirichlet-Neumann case may be worked out in the same way as before, now using the
results from Sect. 3.2.2. Upon explicit evaluation of (22) with the help of (17) we find

dYt = −2dBt + 2θ ′
4(Yt/2π |2i(p − t)/π)

πθ4(Yt/2π |2i(p − t)/π)
dt, Yt=0 = x. (37)

What type of stochastic process does it correspond to? To answer this question, consider
Brownian motion B4t with Bt=0 = x and ask for the probability (density) that it is found
at π(2n + 1) with some n ∈ Z at time t = p. We find Px[B4p ∈ [π(2n + 1),π(2n + 1) +
dy] for some n ∈ Z] = θ4(x/2π |2ip/π)dy. It follows that (37) describes Brownian motion
starting from x and conditioned to visit π(2n + 1) for some n ∈ Z at time t = p. This is
equivalent to a Brownian bridge on S1, with n playing the role of the winding number.

In order to determine the passage probabilities (23) and (24) for the SLE4 trace, let us
consider the two functions

u1(y,p) = θ1(y/2π,2ip/π)

θ4(y/2π,2ip/π)
,

u2(y,p) = 1

2π

(
2pθ ′

4(y/2π,2ip/π)

πθ4(y/2π,2ip/π)
+ y

)
.

Using Itô’s formula one readily checks that M
(1)
t = u1(Yt ,p − t) and M

(2)
t = u2(Yt ,p − t)

are local martingales for the process Yt defined through (37). The idea behind the second
martingale is to use the infinitesimal Lie symmetry v = 4p ∂y + y u∂u of the heat equa-
tion u̇ = 2u′′ [30]. For all p > 0 we have u1(0,p) = u1(2π,p) = 0, u2(0,p) = 0, and
u2(2π,p) = 1. Moreover for y ∈ (0,2π) we have the limits limp→0+ u1(y,p) = 1 and
limp→0+ u2(y,p) = 1/2. Using these boundary conditions, we can rewrite the martingales
at the stopping time t = τ in terms of projectors M(1)

τ = 1Yτ ∈(0,2π) and M(2)
τ = 1Yτ =2π +

1Yτ ∈(0,2π)/2. Hence, using the strong Markov property we find β(x,p) = E[M(1)
τ ] = u1(x,p)

and γ (x,p) = E[M(2)
τ − M(1)

τ /2] = u2(x,p) − u1(x,p)/2, or more explicitly

β(x,p) =
∑

n∈Z
n(e−(x−π(4n+1))2/8p + e−(x−π(4n−1))2/8p)∑

n∈Z
(e−(x−π(4n+1))2/8p + e−(x−π(4n−1))2/8p)

, (38)

γ (x,p) =
∑

n∈Z
(e−(x−π(4n+1))2/8p − e−(x−π(4n−1))2/8p)∑

n∈Z
(e−(x−π(4n+1))2/8p + e−(x−π(4n−1))2/8p)

. (39)

These are the hitting and the left-passage probability for Dirichlet-Neumann boundary con-
ditions. The two probabilities are illustrated on Fig. 6. As before, the right-passage proba-
bility α(x,p) follows from the sum rule.

5 Compactified Free Field and SLE4 Variants

Up to now we have analysed the case of an uncompactified free field whose relation to SLE
is well established [34]. Yet the key observation in Sect. 3.3 is only based on (i) κ = 4, c = 1
and (ii) the fact, that the model contains a boundary operator with a Virasoro degeneracy at
level two of its Verma module. This remains true if we compactify the free field at its self-
dual radius R = √

2 (in our normalisation). In this section we concentrate on this self-dual
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Fig. 6 Dirichlet-Neumann
boundary conditions: the
left-passage probability β(x,p)

(solid line), and the hitting
probability γ (x,p) (dashed line),
both for p = π

point where the theory is equivalent to the SU(2) Wess-Zumino-Witten model at level 1,
i.e. one of the most simple conformal field theories with extended symmetry. For these
CFTs it remains an open question to identify the geometric nature of the SLE traces [13].
In the present case however, the connection with the Gaussian free field leads to the natural
assumption that we may still think of them as discontinuity lines of the field, despite the
compactification. We shall make this our working hypothesis, however this point deserves
further investigation.

5.1 Generalities, SU(2) Boundary States

Upon compactification X ≡ X+2πR the conformal field theory contains primary operators
ϕn,m(z, z̄) with conformal weights

h = 1

2

(
n

R
+ mR

2

)2

, h̄ = 1

2

(
n

R
− mR

2

)2

, n,m ∈ Z,

and the self-dual radius is given by R = √
2. At any rational multiple of the self-dual ra-

dius R = √
2M/N , where M,N are coprime integers, the theory contains a chiral Virasoro

representation with conformal weight h = 1/4 as can be seen from Bezout’s lemma [19].
Moreover, at R = √

2 there are three chiral fields with conformal weight 1: if we decompose
the free boson into left- and right-movers X(z, z̄) = φ(z) + φ̄(z̄) then the currents are given
by (J±(z) = J 1(z) ± iJ 2(z))

J 3(z) = i∂φ(z)√
2

, J±(z) =: exp±i
√

2φ(z) :, (40)

and likewise for the second copy (here : : denotes the usual normal ordering). The currents
form two copies of the ŝu(2)1 Kac-Moody algebra. The enhanced symmetry at this point
makes the fields organise in spin-j representations of SU(2) with j = 0,1/2,1,3/2, . . .

In particular, the boundary fields ψ± with conformal weights h = 1/4 belong to the spin-
1/2 representation (hence the fundamental representation). Let us point out that the spin-
1/2 boundary operator was used by Bettelheim et al. [13] to extend the SLE approach to
conformal field theories with ŝu(2)k symmetries.

The currents J a(z) can be used to construct a large class of conformally invariant bound-
ary conditions parametrised by g ∈ SU(2). In radial quantisation these are represented by
boundary states |g〉 which are solution to the gluing conditions [20, 21]

(Adg·ι(J a
n ) + J̄ a

−n)|g〉 = 0, ι =
(

0 1
−1 0

)
, (41)
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where J a
n , J̄ a

n are the modes of the SU(2)-currents, and Adg(J
a
n ) = gJ a

n g−1 =∑
b J b

n (Adg)ba . Given the structure of the gluing conditions we may interpret |g〉 as an
SU(2)-rotated Cardy identity state

|g〉 = (g · ι)|1〉Cardy. (42)

From the invariance of the Killing form we see that |g〉 respects the reparametrisation invari-
ance (Ln − L̄−n)|g〉 = 0 and therefore are proper conformally invariant boundary conditions.
Moreover, the boundary states defined through (41) are known to be related to marginal
boundary deformations of the free boson conformal field theory: these correspond to adding
to the action periodic boundary interactions proportional to : sinX/

√
2 : and : cosX/

√
2 :

with coupling constants that allow to determine g and the boundary states |g〉 [14, 15, 31].
As an example, let us explicitly write the U(1)-boundary states. The choice

g =
(

eiμ/
√

2 0
0 e−iμ/

√
2

)

leads to Dirichlet boundary conditions with X ≡ μ at the boundary. Conversely, Neumann
boundary conditions are obtained with

g =
(

0 eiμ̃/
√

2

−e−iμ̃/
√

2 0

)
,

where μ̃ parametrises the so-called Wilson line (value taken by the dual field at the bound-
ary).

5.2 Partition Functions, Current One-point Functions

Our goal consists of computing the two-point boundary function 〈ψ−(x)ψ+(0)〉Tp for gen-
eral SU(2) boundary conditions. To this end, we need some additional input related to the
cylinder amplitude and the one-point functions of the SU(2) currents which we gather in
this section.

The cylinder amplitude A = A(g1, g2), which is the CFT partition function for the model
with a g1 boundary condition on the lower and a g2 boundary condition on the upper bound-
ary of the cylinder, is determined in terms of an angle α that is found from

2 cosα = Tr(g−1
1 g2).

Here the trace is taken in the fundamental representation of SU(2). Since α is only deter-
mined modulo 2π we may restrict it to α ∈ [0,2π). Moreover, for any such α we have
2π −α as further solution. However, in this section this ambiguity is not important since the
expressions involving α are the same for either choice. In terms of this angle the cylinder
amplitude is given by [20]

A = 〈g1|e−p(L0+L̄0−1/12)|g2〉 = 1√
2η(ip/π)

∑
n∈Z

e−n2p/2 cosnα. (43)

As an example, −λ-Dirichlet conditions on the lower boundary and μ-Dirichlet conditions
on the upper boundary conditions lead to α = π/2 + μ/

√
2. This can be seen from the
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uncompactified cylinder amplitude (15) after periodisation in μ with period 2πR = 2
√

2π

(this corresponds to a summation over all winding sectors). The Dirichlet-Neumann case
yields α = π/2 what is compatible with (18) (the Dirichlet-Neumann partition functions for
R = ∞ and R = √

2 coincide [14]). More generally we impose −λ-Dirichlet boundary con-
ditions on the lower boundary, and an arbitrary boundary condition on the upper boundary.
The corresponding matrices are given by

g1 =
(−i 0

0 i

)
, g2 =

(
a b

−b∗ a∗

)
, with |a|2 + |b|2 = 1, (44)

and the angle α is solution to cosα = −Ima. As we may choose an arbitrary g2 ∈ SU(2),
the parameter space of our two-boundary problem is given by the sphere S3.

Besides the partition function we shall need the one-point functions of the current J 3(z)

on the cylinder. The general one-point function 〈J a(z)〉Tp is related to Lie derivatives of the
partition function A: A(g1, g2)〈J a(z)〉Tp = La

1 A(g1, g2) along ta = σa/2 where σa denote
the Pauli matrices (the subscript 1 emphasises that the derivative acts on g1). As we show in
the Appendix for a = 3 this leads to

A〈J 3(z)〉Tp = Rea

2
√

2η(ip/π) sinα

∑
n∈Z

nen2p/2 sinnα. (45)

5.3 A Boundary Two-point Function on the Cylinder

We now compute the boundary two-point function 〈ψ−(x)ψ+(0)〉Tp for SU(2) boundary
conditions characterised by the matrices given in (44). Our analysis is based on a simple
fusion argument: as x → 0+ we use the fusion rule (12) and thus find

A〈ψ−(x)ψ+(0)〉Tp ∼ Ax−1/2 + A
2
√

2

〈
∂X(0)

∂ν

〉
Tp

x1/2 + · · · . (46)

Since the normal derivative of the field X is evaluated on a Dirichlet boundary, we can
convert it to a SU(2) current: 〈∂X(0)/∂ν〉Tp = 2

√
2〈J 3(0)〉Tp , and evaluate the one-point

function with the help of (45). On the other hand, the general form (20) suggests that

A〈ψ−(x)ψ+(0)〉Tp ∼ f (0,p)

η(ip/π)
x−1/2 + f ′(0,p)

η(ip/π)
x1/2 + · · · . (47)

Here we used that f (x,p) cannot be singular as x → 0+ in order to be consistent with
the operator product expansion, and furthermore the series expansion θ1(x/2π |ip/π) ∼
η(ip/π)3x + · · · for small x. Comparison of (46) and (47) then leads to the boundary con-
ditions

f (0,p) = η(ip/π)A, f ′(0,p) = η(ip/π)A〈J 3(0)〉Tp . (48)

We know that the function f (x,p) has to be a solution of the heat equation ḟ (x,p) =
2f ′′(x,p) as a consequence of the level two Virasoro degeneracy of the boundary opera-
tors ψ±. The general expressions in (43) and (45) thus suggest that we should write this
function as a Fourier series expansion

f (x,p) = a0

2
+

∞∑
n=1

e−n2p/2

(
an cos

(
nx

2

)
+ bn sin

(
nx

2

))
.
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We determine the Fourier coefficients from (48): the result is an = √
2 cosnα and bn =√

2Rea sinnα/ sinα. More explicitly the function f (x,p) takes the form

f (x,p) = 1√
2

+ √
2

∞∑
n=1

e−n2p/2

(
cosnα cos

(
nx

2

)
+ Rea sinnα

sinα
sin

(
nx

2

))
. (49)

Hence we have succeeded to determine the correlation function 〈ψ−(x)ψ+(0)〉Tp (20) for
generalised SU(2) boundary conditions at the upper boundary of the cylinder.

5.4 SLE4 Variants

5.4.1 Definition

We use our result (49) for the compactified free field at the self-dual radius in order to
define some SLE4 variants from the partition function/two-point function 〈ψ−(x)ψ+(0)〉Tp

according to (8). As in the uncompactified case we study the process through the relative
coordinate Yt , whose time evolution is given by (22)

dYt = −2dBt + 4f ′(Yt ,p − t)

f (Yt ,p − t)
dt, Y0 = x.

We mentioned before that the structure of this stochastic differential equation implies that Yt

is some conditioned (or Doob h-transformed) Brownian motion. What kind of conditioning?
To give meaning to (22) in this particular case it is useful to apply the Poisson summation
formula and rewrite the function f (x,p), given in (49), as

f (x,p) =
√

π

p

∑
n∈Z

(ω+e−(x−2α−4πn)2/8p + ω−e−(x+2α−4πn)2/8p)

with

ω± = sinα ± Rea

2 sinα
, ω+ + ω− = 1. (50)

It is not difficult to show that for any SU(2) boundary condition g2 on the upper boundary we
have 0 ≤ ω± ≤ 1. Therefore f (x,p) is strictly positive for all p > 0. If we introduce the two
lattices L± = {±2α + 4πn}n∈N then we may interpret our process Yt as Brownian motion
starting from Y0 = x, and conditioned to visit the lattice L± at time t = p with respective
probability ω±. We thus encounter a generalisation of the process for Dirichlet-Neumann
boundary conditions studied in Sect. 4.4.

5.4.2 Passage Probabilities

In order to find the passage probabilities (23) and (24) for the SLE4 traces on the cylinder, we
must solve the first-exit problem from the interval [0,2π] for the process Yt (see Fig. 7 for
an illustration). The time evolution of the relative coordinate depends on the two complex
parameters a, b of the SU(2) boundary condition on the upper boundary only through α

and ω±. These are fully specified by the complex parameter a. The only restriction on b

then is given by the condition |a|2 +|b|2 = 1. This equation determines only the modulus of
the complex number b but not its phase. It turns out that for given a any of the probabilities
α(x,p), β(x,p) and γ (x,p) will be invariant under the replacement b → eiθ b.
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Fig. 7 Illustration for the diffusion process Yt . It starts from Y0 = x ∈ (0,2π) and visits the lattices L±,
indicated by • and ◦ respectively, with probability ω± . In order to compute the passage/hitting probabilities
we study the first-exit of this process from (0,2π)

As for the uncompactified free field we find the probabilities by constructing (local)
martingales with appropriate boundary conditions and check their behaviour at the stopping
time τ = inf{t :Yt /∈ (0,2π)} ∧ p. Since Yt is a conditioned Brownian motion, any such
martingale will be of the form

Mt = h(Yt ,p − t)

f (Yt ,p − t)
,

with h(x,p) being some solution of the heat equation ḣ(x,p) = 2h′′(x,p). Let us introduce
two particular solutions which will be useful to solve our problem. The strategy outlined
here below is a straightforward generalisation of the Dirichlet-Neumann case we have en-
countered in Sect. 4.4.

Hitting probability. Let us first consider 0 ≤ α ≤ π . The function

h1(x,p) = ω+
√

π

p

∑
n∈Z

(e−(x−2α−4πn)2/8p − e−(x+2α−4πn)2/8p)

clearly is a solution of the heat equation. It is positive for x ∈ (0,2π) and for p > 0 we have
h(x = 0,p) = h(x = 2π,p) = 0. Hence the function

u1(x,p) = h1(x,p)

f (x,p)

is positive for x ∈ (0,2π) and zero at x = 0,2π . Moreover, it is easy to show that for
x ∈ (0,2π) we have limp→0+ u1(x,p) = 1, and u1(0,p) = u1(2π,p) = 0 for all p > 0.
Therefore M

(1)
t = u1(Yt ,p − t) is a local martingale for the process defined through (22). It

is not difficult to check that it is bounded for 0 ≤ t ≤ τ and therefore a proper martingale.
Moreover at the stopping time we have

M(1)
τ = 1Yτ =0,2π .

Therefore we find the probability that the trace hits the inner boundary γ (x,p) = E[M(1)
τ ] =

u1(x,p), for α ∈ [0,π ], or more explicitly

γ (x,p) = ω+
∑

n∈Z
(e−(x−2α−4πn)2/8p − e−(x+2α−4πn)2/8p)∑

n∈Z
(ω+e−(x−2α−4πn)2/8p + ω−e−(x+2α−4πn)2/8p)

. (51)

For π ≤ α ≤ 2π the analysis is similar and yields

γ (x,p) = ω−
∑

n∈Z
(e−(x+2α−4πn)2/8p − e−(x−2α−4πn)2/8p)∑

n∈Z
(ω+e−(x−2α−4πn)2/8p + ω−e−(x+2α−4πn)2/8p)

. (52)
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In Sect. 4 we observed that for SLE4 processes defined from the uncompactified free
field the trace almost surely does not hit the upper boundary of the cylinder for Dirich-
let boundary conditions with value μ if |μ| ≥ λ. Let us analyse this in the present situa-
tion. Non-hitting is equivalent to γ ≡ 0. First, for α ∈ [0,π] we must have ω+ = 0 what
amounts to Rea = − sinα as can be seen from (50). However, recall from Sect. 5.2 that
Ima = − cosα. It follows that the hitting probability vanishes only if a = e−i(α+π/2), i.e.
that possible non-hitting only occurs for pure Dirichlet boundary conditions. For these we
know that α = π/2 + μ/

√
2 on the one-side, and a = eiμ/

√
2 on the other side. The two

expressions for a are thus only compatible for α = 0 or π , i.e. for μ = ±λ. For all val-
ues of μ comprised between −λ and λ the traces hit the upper boundary of the cylinder
with non-zero probability. Second, for α ∈ [π,2π ] the hitting probability is identically zero
provided that ω− = 0. This is equivalent to Rea = + sinα and hence a = ei(α−π/2). Using
α = π/2 + μ/

√
2 we see that this is compatible with pure Dirichlet boundary conditions,

provided that λ ≤ μ ≤ 3λ. If μ exceeds the upper bound 3λ then we are back to the first
case because of the 4λ = 2πR periodicity of the compactified free field. Notice the coher-
ence with our previous results: whereas for the uncompactified free field the traces could
hit the upper boundary only for μ ∈ (−λ,λ), it is possible in the compactified case for μ-
Dirichlet boundary conditions as μ ∈ (−λ + 2πnR,λ + 2πnR), n ∈ Z, and more generally
for any SU(2) boundary condition which is not pure Dirichlet. In particular, for Neumann
boundary conditions with arbitrary μ̃ we recover the results from Sect. 4.4.

Left-passage probability. In order to compute the left-passage probability make the follow-
ing observation. Recall that f (x,p) is a solution to the heat equation ḟ (x,p) = 2f ′′(x,p).
Using its Lie symmetries we construct new solutions: as pointed out earlier the com-
bination g(x,p) = 4pf ′(x,p) + xf (x,p) solves that equation, too. Define h2(x,p) =
(g(x,p) − g(−x,p))/4π . Obviously, this function solves the heat equation. Moreover, we
have h2(x = 0,p) = 0 and h2(x = 2π,p) = f (x = 2π,p) for all p > 0. Let us introduce
the auxiliary function

u2(x,p) = h2(x,p)

f (x,p)
.

We have u2(0,p) = 0 and u2(2π,p) = 1 for all p > 0. As for the hitting probability we
will have to make a distinction between 0 ≤ α ≤ π and π ≤ α ≤ 2π . Let us concentrate on
the first case. Then for x ∈ (0,2π) we find limp→0+ u2(x,p) = α/(2πω+) irrespectively of
the precise value taken by x. Thus the stochastic process M

(2)
t = u2(Yt ,p − t) which is a

local martingale for Yt defined through (22). It is bounded for 0 ≤ t ≤ τ by construction and
hence a proper martingale. At t = τ we can write it as a sum of projectors

M(2)
τ = 1Yτ =2π +

(
α

2πω+

)
1Yτ =(0,2π).

Thus we find the left-passage probability β(x,p) = E[M(2)
τ −αM(1)

τ /(2πω+)] = u2(x,p)−
αu1(x,p)/(2πω+), or more explicitly:

β(x,p) =
∑

n∈Z
n(e−(x−2α−4πn)2/8p + e−(x+2α−4πn)2/8p)∑

n∈Z
(ω+e−(x−2α−4πn)2/8p + ω−e−(x+2α−4πn)2/8p)

. (53)

As before, the right-passage probability α(x,p) follows from the sum rule. For π ≤ α ≤ 2π

the derivation is similar, and the result for β(x,p) remains the same.
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6 Conclusion

In conclusion we have studied different variants of chordal SLE4 on a doubly connected
domain. The main outcome were the passage probabilities from the solution of first-exit
problems of Brownian bridges and related processes from an interval. These generalise the
well-known formula by Schramm for κ = 4. Moreover, using the boundary states of the
compactified free field at the self-dual radius we have introduced SLE4 variants parametrised
by elements of SU(2), and for which we can continuously interpolate from Dirichlet to
Neumann boundary conditions on a second boundary component.

The two values κ = 2 (see [22, 23]) and κ = 4, which turn out to be amenable to explicit
calculations, are part of the special series κ = 2,8/3,4,6,8 (maybe also κ = 3) where SLEκ

enjoys special properties, and which correspond to particularly simple conformal field theo-
ries. While it seems difficult to solve the passage problem on doubly connected domains for
general κ—given the complexity of the involved partial differential equations—it would be
nice to see whether other values in the special series are amenable to explicit calculations.
In our opinion this would be interesting since, as shown in this article, it allows to study
how the SLE traces react to different conformal boundary conditions imposed on the second
boundary component.

Finally, for κ = 4 it would be interesting to understand whether there is a relation of the
SLE4 variants based on the compactified free field at the self-dual radius and some lattice
model that admits suitable lattice boundary conditions that converge to the SU(2) boundary
conditions in the scaling limit.
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Appendix: Current One-point Function and Lie Derivatives of the Partition Function

Consider a real-valued function f : Gn → R where G is some Lie group. Choose some
X ∈ g from its Lie algebra g. We use the Lie derivative LX

k defined as

(LX
k f )(g1, . . . , gn) = lim

ε→0

f (g1, . . . , e
iεXgk, . . . , gn) − f (g1, . . . , gn)

ε
.

Here we concentrate on G = SU(2). For the Lie algebra su(2) we choose the spin basis. In
the fundamental representation its generators are given by ta = σa/2, a = 1,2,3 where σa

are the Pauli matrices. The partition function A(g1, g2) depends only on g−1
1 g2 and there-

fore (LX
1 + LX

2 )A(g1, g2) = 0. Let us therefore concentrate on the derivative with respect
to g1, which we evaluate for the choice (44). In fact, it is sufficient to consider the varia-
tion of the angle α as g1 → eiεXg1: if we write X = ∑3

a=1 Xat
a then we find to first order

in ε:

α → α + Re [(X1 + iX2)b − aX3]
2 sinα

ε + · · · .

Therefore, the Lie derivative with respect to some general X = ∑
a Xat

a in su(2) is given
by
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LX
1 A(g1, g2) = Re[(X1 + iX2)b − aX3]

2 sinα

∂A(g1, g2)

∂α

= −Re[(X1 + iX2)b − aX3]
2
√

2η(ip/π) sinα

∑
n∈Z

nen2p/2 sinnα. (54)

The Lie derivatives La A with respect to the base vectors ta are found upon specifying
Xb = δab .

In order to relate this to the one-point function for the current J a(z) it is convenient
to map the cylinder Tp back to the annulus Ap , and use radial quantisation. The confor-
mal transformation from Tp to Ap is given by w = eiz, and we thus have 〈J a(z)〉Tp =
iw〈J a(w)〉Ap . On Ap the correlation function of any collection of local operators is given
by

〈O〉Ap = 〈g1|Oe−p(L0+L̄0−1/12)|g2〉
A

.

From this definition and the gluing conditions (41) it is easy to see that 〈J a(w)〉Ap =
w−1〈J a

0 〉Ap . In order to evaluate the insertion of a current zero mode recall that any boundary
state |g〉 may be obtained by the action of g · ι on a Cardy identity state, and that in some
representation λ of su(2) the zero modes J a

0 act like −taλ where taλ are the generators of the
Lie algebra in that particular representation [19]. Therefore we find

A〈J a
0 〉Ap = −iLa

1 A = iLa
2 A.

It follows that A〈J a(z)〉Tp = La
1 A as claimed in the text.
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